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What is a Lie Algebra?

Definition: Lie Algebra

Let L be a vector space over a field F.
Let L? — L: (x,y) + [x,y] be a map, called the Lie bracket,
which satisfies the following properties:

m It is bilinear.

m [x,x] =0 for any x € L;

m [x[y,z]] + [y, [z,x]] + [z, [x, ¥]] = O for any x,y,z € L.
Then, L, together with the Lie bracket, is a Lie algebra over F.
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Two Examples of Lie Algebras

Example 1

gl, (F) — n x n matrices with entries in F.

Example 2

sl, (F) — n X n matrices with zero trace with entries in F.

Both of these Lie algebras have their Lie bracket defined by

[x,y] := xy — yx.
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Introducing sl (C)

slp (C) — 2 x 2 matrices with zero trace with entries in C.

Remark: We can form a basis of sl, (C) using the following
matrices:

= (53 = (0 5= 5 )
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Lie modules

Definition: Lie module

Let L be a Lie algebra over a field F.
Let M be a finite-dimensional vector space over F.
Then, consider the following bilinear map

LxM—M:(x,m)— x-m
which satisifies
[x,y] m=x-(y-m)—y-(x-m)
for all x,y € L and all m € M.

Then, M, together with this map, is called a Lie module for L.
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Submodules and Irreducible Modules

Definition: Submodule

Let L be a Lie algebra and M an L-module.
Let S be a subspace of M.

If x-s €S for every x € L and every s € S, then S is called a
submodule of M.

Remark: M and {0} are submodules of M.

Definition: Irreducible Lie module

If M is a non-zero Lie module and has no submodules other than
{0} and M, then M is said to be irreducible.
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A family of sl, (C) modules

Consider the vector space C[X, Y] of polynomials in two variables
X, Y with complex coefficients.

For d > 0, let V4 be the subspace of homogeneous polynomials in
X and Y of degree d.

Example 1: V5 has the following basis vectors: X2, XY, Y2

Example 2: V, has the following basis vectors:

X9 x4ty . xydt yd
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V4 as an sl (C) module

How does sl (C) “act” on V,?

Remark: It suffices to consider how the basis vectors of sl (C) act
on the basis vectors of V.
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The action on Vj

—-d —d+2
Yd Yd 1 Xd 1Y Xd
Rrert’ Rrert’ e’ R R—
0 1 2 d—1 d
e—%ij' f—>sz- ij——in

A oX’ oX oy’
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Classifying finite-dimensional sl; (C) modules

m Vj is an irreducible sl (C) module.

m If M is a finite-dimensional sl (C) module, then M is
isomorphic to one of the V.



Thank you for your attention.

Please feel free to ask any questions.



