Representation theory of $\mathfrak{sl}_2(\mathbb{C})$

James R. Calvert

Supervised by Vanessa Miemietz

What is a Lie Algebra?

What is a Lie Algebra?

Definition: Lie Algebra

Let L be a vector space over a field F.

Let *L* be a vector space over a field *F*. Let $L^2 \rightarrow L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

Let *L* be a vector space over a field *F*. Let $L^2 \rightarrow L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

It is bilinear.

Let *L* be a vector space over a field *F*. Let $L^2 \rightarrow L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

It is bilinear.

$$[x, x] = 0 \text{ for any } x \in L;$$

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for any $x, y, z \in L$.

Let *L* be a vector space over a field *F*. Let $L^2 \rightarrow L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

It is bilinear.

$$[x, x] = 0 \text{ for any } x \in L;$$

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for any $x, y, z \in L$.

Then, L, together with the Lie bracket, is a Lie algebra over F.

Two Examples of Lie Algebras

Two Examples of Lie Algebras

Example 1

$\mathfrak{gl}_n(F) - n \times n$ matrices with entries in F.

Example 1

 $\mathfrak{gl}_n(F) - n \times n$ matrices with entries in F.

Example 2

 $\mathfrak{sl}_n(F) - n \times n$ matrices with zero trace with entries in F.

Example 1

 $\mathfrak{gl}_n(F) - n \times n$ matrices with entries in F.

Example 2

 $\mathfrak{sl}_n(F) - n \times n$ matrices with zero trace with entries in F.

Both of these Lie algebras have their Lie bracket defined by

$$[x,y] := xy - yx.$$

Introducing $\mathfrak{sl}_{2}(\mathbb{C})$

$\mathfrak{sl}_2\left(\mathbb{C}\right)-2\times 2$ matrices with zero trace with entries in $\mathbb{C}.$

$\mathfrak{sl}_2(\mathbb{C}) - 2 \times 2$ matrices with zero trace with entries in \mathbb{C} .

Remark: We can form a basis of $\mathfrak{sl}_2(\mathbb{C})$ using the following matrices:

$$e := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Definition: Lie module

Let L be a Lie algebra over a field F.

Definition: Lie module

Let L be a Lie algebra over a field F. Let M be a finite-dimensional vector space over F.

Definition: Lie module

Let L be a Lie algebra over a field F. Let M be a finite-dimensional vector space over F. Then, consider the following bilinear map

 $L \times M \rightarrow M : (x, m) \mapsto x \cdot m$

Definition: Lie module

Let L be a Lie algebra over a field F. Let M be a finite-dimensional vector space over F. Then, consider the following bilinear map

$$L \times M \rightarrow M : (x, m) \mapsto x \cdot m$$

which satisifies

$$[x, y] \cdot m = x \cdot (y \cdot m) - y \cdot (x \cdot m)$$

for all $x, y \in L$ and all $m \in M$.

Definition: Lie module

Let L be a Lie algebra over a field F. Let M be a finite-dimensional vector space over F. Then, consider the following bilinear map

$$L \times M \rightarrow M : (x, m) \mapsto x \cdot m$$

which satisifies

$$[x, y] \cdot m = x \cdot (y \cdot m) - y \cdot (x \cdot m)$$

for all $x, y \in L$ and all $m \in M$.

Then, M, together with this map, is called a **Lie module** for L.

Submodules and Irreducible Modules

Submodules and Irreducible Modules

Definition: Submodule

Let L be a Lie algebra and M an L-module.

Submodules and Irreducible Modules

Definition: Submodule

Let L be a Lie algebra and M an L-module. Let S be a subspace of M.

Definition: Submodule

Let L be a Lie algebra and M an L-module. Let S be a subspace of M.

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a **submodule** of M.

Definition: Submodule

Let L be a Lie algebra and M an L-module. Let S be a subspace of M.

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a **submodule** of M.

Remark: M and $\{0\}$ are submodules of M.

Definition: Submodule

Let L be a Lie algebra and M an L-module. Let S be a subspace of M.

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a **submodule** of M.

Remark: M and $\{0\}$ are submodules of M.

Definition: Irreducible Lie module

If M is a non-zero Lie module and has no submodules other than $\{0\}$ and M, then M is said to be **irreducible**.

A family of $\mathfrak{sl}_2(\mathbb{C})$ modules

For $d \ge 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d.

For $d \ge 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d.

Example 1: V_2 has the following basis vectors: X^2 , XY, Y^2 .

For $d \ge 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d.

Example 1: V_2 has the following basis vectors: X^2 , XY, Y^2 .

Example 2: V_d has the following basis vectors:

$$X^d, X^{d-1}Y, \ldots, XY^{d-1}, Y^d.$$

V_d as an $\mathfrak{sl}_2(\mathbb{C})$ module

V_d as an $\mathfrak{sl}_2(\mathbb{C})$ module

How does $\mathfrak{sl}_2(\mathbb{C})$ "act" on V_d ?

How does $\mathfrak{sl}_2(\mathbb{C})$ "act" on V_d ?

Remark: It suffices to consider how the basis vectors of $\mathfrak{sl}_2(\mathbb{C})$ act on the basis vectors of V_d .

$0 \qquad Y^d \quad XY^{d-1} \quad \cdots \quad X^{d-1}Y \quad X^d \qquad 0$

 $e \to X \frac{\partial}{\partial Y}; \quad f \to Y \frac{\partial}{\partial X}; \quad h \to X \frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y}.$

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

• V_d is an irreducible $\mathfrak{sl}_2(\mathbb{C})$ module.

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

- V_d is an irreducible $\mathfrak{sl}_2(\mathbb{C})$ module.
- If M is a finite-dimensional sl₂ (ℂ) module, then M is isomorphic to one of the V_d.

Thank you for your attention.

Please feel free to ask any questions.