Representation theory of $sl_2(\mathbb{C})$

James R. Calvert

Supervised by Vanessa Miemietz

What is a Lie Algebra?

What is a Lie Algebra?

Definition: Lie Algebra

Let L be a vector space over a field F .

Let L be a vector space over a field F . Let $L^2 \to L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

Let L be a vector space over a field F . Let $L^2 \to L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

 \blacksquare It is bilinear.

Let L be a vector space over a field F .

Let $L^2 \to L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

 \blacksquare It is bilinear.

$$
[x, x] = 0 \text{ for any } x \in L;
$$

■ $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for any $x, y, z \in L$.

Let L be a vector space over a field F .

Let $L^2 \to L : (x, y) \mapsto [x, y]$ be a map, called the *Lie bracket*, which satisfies the following properties:

 \blacksquare It is bilinear.

$$
[x, x] = 0 \text{ for any } x \in L;
$$

■ $[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$ for any $x, y, z \in L$.

Then, L, together with the Lie bracket, is a Lie algebra over F .

Two Examples of Lie Algebras

Two Examples of Lie Algebras

Example 1

 $\mathfrak{gl}_{n}(F)-n\times n$ matrices with entries in F.

Example 1

 $\mathfrak{gl}_{n}(F)-n\times n$ matrices with entries in F.

Example 2

 $\mathfrak{sl}_n(F) - n \times n$ matrices with zero trace with entries in F.

Example 1

 $\mathfrak{gl}_{n}(F)-n\times n$ matrices with entries in F.

Example 2

 $\mathfrak{sl}_n(F)$ – $n \times n$ matrices with zero trace with entries in F.

Both of these Lie algebras have their Lie bracket defined by

$$
[x,y]:=xy-yx.
$$

Introducing $\overline{\mathfrak{sl}_2\left(\mathbb{C}\right)}$

$\mathfrak{sl}_2(\mathbb{C})$ – 2 × 2 matrices with zero trace with entries in \mathbb{C} .

$\mathfrak{sl}_2(\mathbb{C})$ – 2 × 2 matrices with zero trace with entries in \mathbb{C} .

Remark: We can form a basis of $\mathfrak{sl}_2(\mathbb{C})$ using the following matrices:

$$
e:=\begin{pmatrix}0&1\\0&0\end{pmatrix},\; f:=\begin{pmatrix}0&0\\1&0\end{pmatrix},\; h:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}.
$$

Definition: Lie module

Let L be a Lie algebra over a field F .

Definition: Lie module

Let L be a Lie algebra over a field F . Let M be a finite-dimensional vector space over F .

Definition: Lie module

Let L be a Lie algebra over a field F . Let M be a finite-dimensional vector space over F . Then, consider the following bilinear map

 $L \times M \rightarrow M : (x, m) \mapsto x \cdot m$

Definition: Lie module

Let L be a Lie algebra over a field F . Let M be a finite-dimensional vector space over F . Then, consider the following bilinear map

$$
L \times M \to M : (x, m) \mapsto x \cdot m
$$

which satisifies

$$
[x, y] \cdot m = x \cdot (y \cdot m) - y \cdot (x \cdot m)
$$

for all $x, y \in L$ and all $m \in M$.

Definition: Lie module

Let L be a Lie algebra over a field F . Let M be a finite-dimensional vector space over F . Then, consider the following bilinear map

$$
L \times M \to M : (x, m) \mapsto x \cdot m
$$

which satisifies

$$
[x, y] \cdot m = x \cdot (y \cdot m) - y \cdot (x \cdot m)
$$

for all $x, y \in L$ and all $m \in M$.

Then, M, together with this map, is called a Lie module for L.

Submodules and Irreducible Modules

Submodules and Irreducible Modules

Definition: Submodule

Let L be a Lie algebra and M an L -module.

Submodules and Irreducible Modules

Definition: Submodule

Let L be a Lie algebra and M an L -module. Let S be a subspace of M .

Definition: Submodule

Let L be a Lie algebra and M an L -module. Let S be a subspace of M .

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a submodule of M.

Definition: Submodule

Let L be a Lie algebra and M an L -module. Let S be a subspace of M .

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a submodule of M.

Remark: M and $\{0\}$ are submodules of M.

Definition: Submodule

Let L be a Lie algebra and M an L -module. Let S be a subspace of M .

If $x \cdot s \in S$ for every $x \in L$ and every $s \in S$, then S is called a submodule of M.

Remark: M and $\{0\}$ are submodules of M.

Definition: Irreducible Lie module

If M is a non-zero Lie module and has no submodules other than $\{0\}$ and M, then M is said to be **irreducible**.

A family of $\mathfrak{sl}_2(\mathbb{C})$ modules

For $d > 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d .

For $d > 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d .

Example 1: V_2 has the following basis vectors: X^2 , XY , Y^2 .

For $d > 0$, let V_d be the subspace of homogeneous polynomials in X and Y of degree d .

Example 1: V_2 has the following basis vectors: X^2 , XY , Y^2 .

Example 2: V_d has the following basis vectors:

$$
X^d, X^{d-1}Y, \ldots, XY^{d-1}, Y^d.
$$

V_d as an $\mathfrak{sl}_2(\mathbb{C})$ module

V_d as an $\mathfrak{sl}_2\left(\mathbb{C}\right)$ module

How does $\mathfrak{sl}_2(\mathbb{C})$ "act" on V_d ?

How does $\mathfrak{sl}_2(\mathbb{C})$ "act" on V_d ?

Remark: It suffices to consider how the basis vectors of $sI_2(\mathbb{C})$ act on the basis vectors of V_d .

Y ^d XY ^d−¹ · · · X ^d−1Y X ^d 0 0

 $e \rightarrow X \frac{\partial}{\partial \lambda}$ $\frac{\partial}{\partial Y}$; f → Y $\frac{\partial}{\partial Y}$ $\frac{\partial}{\partial X}$; h → X $\frac{\partial}{\partial Y}$ $\frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y}$ $\frac{\partial}{\partial Y}$.

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

 V_d is an irreducible $\mathfrak{sl}_2(\mathbb{C})$ module.

Classifying finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ modules

Theorem

- V_d is an irreducible $\mathfrak{sl}_2(\mathbb{C})$ module.
- If M is a finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ module, then M is isomorphic to one of the V_d .

Thank you for your attention.

Please feel free to ask any questions.